TEMPERATURE-DEPENDENT CHANGE OF SITE OCCUPANCIES IN BORON CARBIDE

H. Werheit

Experimental Physics, University Duisburg-Essen, 47048 Duisburg, Germany
helmut.werheit@uni-due.de

Behind diamond, cubic boron nitride and boron suboxide, boron carbide is the forth-hardest material known. It’s Mohs Hardness is 9.3 and the Vickers Hardness >30 GPa. This confirms high bond strength within the structure. Nevertheless, several studies indicate that regular atoms in the structure are able to change their sites already at moderate temperatures.


Phonon spectra have proven to yield valuable information on the boron carbide structure. The IR-active phonon near 400 cm\(^{-1}\) is related to the central B(3) atom vibrating perpendicular to the axis of the three-atomic chain. In the spectrum, \(^{10}\)B and \(^{11}\)B components are clearly distinguishable. The temperature dependence (Fig. 1), exhibits two significant features: phonon softening below 300 K and splitting between 700 and 800 K. The latter is obviously related to the phase transition [4].

Below ~400 K, the \(^{10}\)B/\(^{11}\)B relation 19/81 in nat\(^{11}\)B determines the B(3) occupancy. Towards higher temperatures, this relation changes significantly and reaches nearly equal values near 800 K, thus indicating that the isotopes change atomic sites.

References: